Mobile communications has followed a development path signposted by “generations”. It forms an interesting history kicking off with the retroactively applied ‘0G’ label used to describe review film analog systems that predated the cellular approach.
Things really got going with the analog/digital technology of the late 1970s and early 80s; ‘1G’ was based on cellular mobile coms that used analog radio for calls but digital systems for backhaul. ‘2G’ arrived in the early 1990s as an all-digital system. Before the turn of the century, we saw ‘3G’ (building on enhancements introduced by 2.5G and 2.75G) which introduced higher throughput to support the emergence of the smartphone. Enhancements to 3G boosted speeds such that it could handle mobile internet and streaming video.
4G is based on the Long Term Evolution (LTE) standard and was introduced in Scandinavia in 2009. It has since been deployed over much of the planet and is the mobile technology with which we are most familiar today. It offers a maximum throughput of 100Mbps (compared to around 15Mbps for 3G) and can support high-definition video, online gaming, and video conferencing.
Next is 5G. The standard was introduced in 2016 and 5G networks are being rolled out. It promises a staggering maximum speed of 32Gbps (downlink) and 13.6Gbps (uplink). Once fully deployed, 5G will be directly competitive with fiber cable solutions for internet support. The technology also offers lower latency, better coverage, and improved spectral efficiency compared to 4G.
So 5G is like 4G then, but just a bit bigger and better. Actually, that’s far from it; 5G also ushers in lots of new technology that’s of little benefit to users of Zoom, Netflix, and TikTok but will prove critical to the growth of the IoT.
Welcome to New Radio
The 3GPP, a unification of seven telecoms standards development organizations, has worked hard to ensure 5G is not only built for demanding consumers, but also for the future requirements of enterprise organizations and the IoT. Behind the scenes, engineers have methodically put together the document that details the International Mobile Telecommunications (IMT)-2020 specifications. IMT-2020 is the bible of 5G, detailing how it will be built and how it will meet the exacting demands of consumers and industry. The specification includes an initial peak data rate of 20Gbps; a typical user data rate of 100Mbps; one-millisecond latency; an “area traffic capacity” of 10Mbps per square meter, and a connection density of one million devices per square kilometer.